ИННОВАЦИИ
ЗАБАЙКАЛЬЯ

Новости

«Педиатр 24/7» - сервис Дениса Юдчица

Телемедицина перестает быть новинкой и входит в повседневную жизнь: в 2018 году сфера наконец получила официальный статус в России.

Российские ученые разработали суперсталь

Из-за суровых условий и агрессивной среды срок службы нефтяных труб составляет всего около 2 лет. Ученые из Московского института стали и сплавов предложили решение, которое позволит увеличить эту цифру вдвое.

Обнаружен зуб мегаакулы

На одном из австралийских пляжей в 100 километрах от Мельбурна палеонтолог-любитель обнаружил зуб гигантской доисторической акулы.

Сибирские учёные создают сосудистые протезы нового типа

В современной медицине уже давно научились делать искусственные сосуды. Проблема в том, что эти аналоги далеко не совершенны: в них образуются тромбы, они отторгаются, зарастают и к тому же имеют очень недолгий срок службы.

Морские животные стали прототипом высокоточной подводной навигационной системы

Несмотря на высокий уровень развития современных технологий, когда дело доходит до ориентирования под поверхностью воды, наши возможности в этой области пока еще весьма и весьма ограничены.

Будущее наступило: 5 новейших технологий вокруг нас

Постепенно новые технологии меняют сознание пользователей, делают выполнение бытовых и рутинных вещей проще, оставляя больше времени для саморазвития и увлечений.

Нейросеть научили рисовать мультики по текстовому сценарию

Американские ученые создали систему нейросетей, которая компилирует короткие ролики с героями мультсериала «Флинстоуны» по текстовому описанию.

Китай разрешил проводить испытания беспилотных автомобилей в стране

Власти Китая с мая 2018 года разрешат провинциям самостоятельно принимать решения о возможности тестирования беспилотных автомобилей на дорогах региона.

К вершинам научных познаний

12 апреля в г. Чите прошел городской форум юных исследователей "К вершинам научных познаний"

В DARPA протестировали нейроимплант - усилитель памяти

Американские инженеры и нейробиологи доказали, что с помощью нейроимпланта можно на 35% улучшить кратковременную память.

Заключен договор на поставку 200 самолетов ТВС-2ДТС

Сегодня Улан-Удэнский авиационный завод заключил долгосрочный договор с авиакомпанией «Полярные авиалинии» на поставку 200 самолетов ТВС-2ДТС.

SpaceX отправила на МКС аппарат, который будет собирать космический мусор

Компания SpaceX запустила на Международную космическую станцию ракету Falcon 9 с грузовым кораблем Dragon, который доставит космонавтам прототип аппарата RemoveDEBRIS для сбора космического мусора.

Утрата верхних конечностей перестанет быть серьезной проблемой


Фото: Юрий Мартьянов / Коммерсантъ

Рука человека — универсальный инструмент, способный как выполнять силовые операции, так и аккуратно и надежно удерживать хрупкие предметы. Утрата верхних конечностей является одной из древнейших проблем человечества, решение которой стало возможным благодаря научному и техническому прогрессу.

От железной руки до бионического протеза

Задачу замены утраченных конечностей человечество пыталось решить еще в античности. Самым известным протезом средневековья является "железная рука" рыцаря фон Берлихингена, сделанная в 1504 году. Протез был похож на железную перчатку с пятью пальцами, которые с помощью шестерни могли поворачиваться и фиксироваться, что позволяло удерживать предметы или оружие. Крепился протез к руке кожаными ремнями. Примерно в ту же эпоху подвижные искусственные конечности сконструировал француз Амбруаз Паре. В начале XIX века немецкий стоматолог и хирург Петер Балифф придумал способ управлять пальцами протеза при помощи движения локтевого сустава. Для этого были использованы тяги, закрепленные на плече пациента так, что при разгибании локтевого сустава пальцы разгибались и, наоборот, для захвата предмета протезом необходимо было согнуть локоть.

После Второй мировой войны для передачи движения пальцам протеза стали использоваться электрические двигатели. В конце 1960-х годов была разработана первая миоэлектрическая система управления, в основе которой лежат методы регистрации и анализа мышечных биопотенциалов (электромиограмма, ЭМГ) человека. Несколько электродов закрепляются на поверхности кожи человека и позволяют измерять электрические импульсы, которые возникают при напряжении и расслаблении мышцы. Эти импульсы через электронные преобразователи передаются к моторам, которые перемещают пальцы. Таким образом, при помощи напряжения и расслабления определенной группы мышц человек может управлять работой протеза. Такие протезы называются бионическими (от древнегреч. — живущее), то есть являются решениями, непосредственно заимствованными у живой природы.

"Железная рука" рыцаря фон Берлихингена, сделанная в 1504 году

Фото: wikimedia.org

Протезы верхних конечностей разделяются на две основные группы — пассивные (косметические и функциональные) и активные (тяговые и миоэлектрические).

Косметические протезы являются высококачественными муляжами здоровой руки, хотя и позволяют выполнять некоторые простые действия, например, поддерживание и толкание предметов. При этом технологии производства косметических протезов могут быть использованы при изготовлении съемных оболочек активных протезов.

К функциональным протезам относятся протезы с возможностью смены насадок, которые могут быть выполнены в виде различных инструментов — крюк, зажим, кольцо, гаечный ключ, молоток и др.

Kleiber Trio (Клайбер бионикс, Россия)

Тяговые протезы представляют собой простейшую версию активных протезов и приводятся в движение при помощи сгибания локтевого сустава, вследствие чего обладают ограниченной функциональностью за счет всего лишь одного варианта сжатия пальцев.

Электромеханические роботизированные (бионические) протезы являются наиболее эффективными решениями для протезирования, так как способны более точно копировать кинематику кисти руки здорового человека за счет использования нескольких независимых приводов для пальцев. Использование большего числа степеней свободы (как правило, пяти-шести) по сравнению с тяговыми протезами позволяет управлять положением пальцев, за счет чего становится возможным выполнение сложных сочетаний движений и реализация разнообразных положений пальцев (паттернов), что позволяет эффективнее захватывать предметы.

Особенности бионических протезов

Последнее десятилетие отмечено высокой активностью среди разработчиков антропоморфных манипуляторов захвата для роботов и бионических протезов рук. В подобных манипуляторах для роботов (DLR Hand II Аэрокосмического центра Германии, Shadow Dexterous Hand компании Shadow Robotics) используются до 22 приводов для управления пальцами, применяются тактильные сенсоры на контактных площадках. Система управления позволяет автоматически схватывать предметы различных форм. Но в качестве протезов подобные решения использоваться не могут из-за большой массы и габаритов предплечья, в котором размещаются сервоприводы. Поэтому, в отличие от антропоморфных манипуляторов, для роботов в бионических протезах используются ограниченный набор приводов и специальная конструкция пальца, в которой дистальная фаланга объединяется с медианной для снижения числа подвижных элементов. Это необходимо, чтобы снизить массу протеза и разместить электронику и моторы внутри кисти, так как автономная кисть позволяет выполнять протезирование с различной степенью ампутации предплечья.

Luke Arm (DEKA Research, США)

Своими успехами разработчики бионических протезов обязаны последним достижениям науки и техники в области аккумуляторов высокой плотности, появлению различных сенсорных устройств, позволяющих бионической руке чувствовать и ощущать взаимодействие с объектами подобно человеку, компактных электрических моторов, высокая эффективность которых обусловлена прогрессом в области производства магнитов на основе редкоземельных металлов. А также микропроцессорам, способным с высокой скоростью обрабатывать информацию от множества сенсоров и принимать решение по управлению приводами пальцев для достижения заданного положения.

Благодаря 22 степеням свободы кисть человека позволяет выполнять сложные сочетания движений, захватывать предметы различной формы. Развитая система осязания дает возможность захвата предметов на ощупь, а также надежно удерживать и выполнять манипуляции.

Современные бионические протезы обладают широким набором вариантов сжатия, специально разработанных для повседневных задач. Управление режимами работы таких протезов может осуществляться как за счет регистрации биопотенциалов на остаточных группах мышц пользователя, так и электрической активности головного мозга, либо при помощи специальной панели управления.

DynamicArm (OttoBock, Германия)

Для пользователя на данный момент недоступно непосредственное управление движением каждого отдельного пальца протеза. Это обусловлено отсутствием коммерческих решений для интеграции с существующими бионическими протезами, а также сложностью в реализации устройств многоканального захвата биосигналов человека. В лаборатории прикладных кибернетических систем МФТИ под руководством Т.К. Бергалиева ведутся разработки в области человеко-машинных интерфейсов на основе биосигналов человека. В частности, там разработана восьмиканальная система управления на основе ЭМГ-сигналов, позволяющая регистрировать интегральную активность мышц предплечья, повышая тем самым количество управляемых степеней свободы. Для коммерциализации разработанной технологии была создана компания ООО "Гальвани-Бионикс", получившая поддержку Фонда содействия развитию малых форм предприятий в научно-технической сфере.

Michelangelo (OttoBock, Германия)

Будущий пользователь может научиться пользоваться протезом с помощью специального программного обеспечения, позволяющего посредством миоэлектрических сенсоров управлять виртуальной моделью будущего протеза. К обучению можно приступать уже на ранних послеоперационных стадиях подготовки к установке бионического протеза, так как для установки протеза требуется изготовить индивидуальную приемную гильзу и может пройти продолжительное (до шести месяцев) время до сформирования окончательной культи.

Зарубежные разработчики протезов часто уделяют преувеличенное внимание количеству паттернов движения (жестов) пальцев, которое иногда доходит до 15-20. Для повседневного использования такое избыточное число не требуется и даже может создать неудобство, так как в течение дня приходится часто переключаться между наиболее подходящими паттернами, при этом используются, как правило, пять-шесть вариантов. При помощи бионических протезов человек может выполнять различные бытовые действия: пользоваться электро- и столовыми приборами, работать за компьютером, перемещать предметы и сумки, открывать емкости и бутылки, гладить белье, одеваться и многое другое.

Российские разработки

Технически различаются два варианта компоновки бионических протезов:

  • Размещение моторов внутри ладони (BeBeonic 3 (OttoBock, Германия, 2012), Michelangelo Hand (OttoBock, Германия,2011), "Миотея" ПР2-Б1 ("НПФ Галатея", РФ, 2005), Stradivary (ООО "Моторика", РФ, 2016))
  • Размещение моторов внутри пальцев и, как следствие, возможность протезировать отдельные пальцы (iLimb Ultra (OSSUR, Исландия, 2008), Evolution 2 (Vincent Systems, Германия, 2015), Kleiber Solo (ООО "Клайбер Бионикс", РФ, 2016)).

Основные преимущества перспективных современных бионических протезов заключаются в следующем:

  • Способность надежно захватывать предметы разных форм
  • Аккуратный автоматический захват хрупких предметов с учетом развиваемых усилий
  • Возможность "осязания" объектов взаимодействия за счет обратной тактильной связи
  • Поворот кисти за счет дополнительных приводов
  • Стабилизация предмета за счет управления положением запястного сустава.

В России в настоящее время на рынке представлен только один бионический протез "Миотея" компании "НПФ "Галатея"", разработанный более десяти лет назад. "Миотея" является наиболее доступным решением, имеет одну степень свободы и может управляться при помощи одно- или двухканальной системы. В первом случае закрытие и раскрытие кисти производится при помощи одной мышцы, во втором используются разные мышцы. Данный протез значительно уступает по функциональности зарубежным.

Перспективными разработками доступных бионических протезов, не уступающих зарубежным аналогам по функциональности, занимаются отечественные компании ООО "Моторика" (Stradivary) и ООО "Клайбер Бионикс" (Kleiber Solo).

Vincent Evolution 2 (VINCENTsystems, Германия)

Компания "Моторика" представила первый в России детский активный тяговый протез "Киби", предназначенный для выполнения захвата небольших предметов. "Киби" изготавливается по индивидуальным меркам по технологии селективного лазерного спекания порошка. В настоящее время компания "Моторика" разрабатывает предсерийный прототип бионического протеза кисти Stradivary, обладающего шестью степенями свободы с размещением приводов внутри ладони. Протез Stradivary планируется оснащать специальным модулем с функцией умных часов.

MyoFacil (OttoBock, Германия)

Линейка разрабатываемых протезов Kleiber компании "Клайбер Бионикс" предназначается для людей с различной степенью ампутации верхних конечностей. Ключевой особенностью этих протезов является использование тактильных сенсоров, размещаемых на подушечках пальцев. Конструктивно тактильный сенсор представляет собой группу контактных площадок, покрытых иммерсионным золотом, поверх которой располагается чувствительный эластомер — композит квантового туннелирования (QTC). Это материал, который в нормальном состоянии является изолятором, но становится проводящим под действием внешних факторов: давления, натяжения или скручивания. Тактильный сенсор позволяет измерять не только нормальную составляющую приложенного воздействия, но и тангенциальную. Измерение последней позволяет значительно улучшить качество системы управления захватом, обеспечивая определение момента начала проскальзывания удерживаемого объекта. Протез дает возможность осязания взаимодействия с предметами, что обеспечивает аккуратный захват легких и хрупких предметов, а пользователь получает обратную тактильную связь. Кисть Kleiber Solo представляет собой сменный модуль, приводимый в движение шестью приводами, который может быть установлен на персональную культеприемную гильзу, а также предназначается для работы в составе протезов руки Kleiber Duo и Trio.

iLimb Ultra (TouchBionics, Шотландия)

Пользователи протезов Kleiber и Stradivary могут самостоятельно настраивать конфигурацию или выбирать из набора готовых паттернов захвата при помощи специальных мобильных приложений, управление протезами осуществляется при помощи миоэлектрических модулей, входящих в комплект поставки. Заряда аккумуляторов хватает на 10-12 часов активной работы. Стоимость бионических протезов Kleiber и Stradivary в несколько раз ниже зарубежных аналогов.

Также компания "Клайбер Бионикс" совместно с разработчиком сервоприводов "РУ.Роботикс" проводят разработку бионического протеза руки выше локтевого сустава Kleiber Duo и Trio. В этих протезах для движения локтевого и плечевого суставов используются до четырех дополнительных приводов. Так, бионические протезы рук для пациентов с ампутацией выше локтевого сустава в данный момент представлены в США (APL`s Modular Prosthetic Limb Университета Джона Хопкинса и Arm System исследовательского центра DEKA Research) и Германии (DynamicArm компании OttoBock). Для управления такими протезами используются многоканальные системы регистрации биопотенциалов.

Эффект "зловещей долины"

Одной из задач при разработке бионических протезов является преодоление так называемого эффекта "зловещей долины". В 1978 году японский ученый Масахиро Мори при исследовании эмоциональных реакций на внешний вид роботов обнаружил, что люди с симпатией относятся к антропоморфным механизмам до определенного предела человекоподобия. Максимальное же сходство с человеком, наоборот, вызывает у них тревогу, отвращение и страх. Этот крутой провал на графике зависимости симпатии окружающих от человекоподобия робота и получил название "зловещей долины".

Эффект "зловещей долины" распространяется и на людей, использующих протезы. Одним из способов изменить отношение к таким людям является популяризация протезно-ортопедического оборудования. Это происходит, например, во время Паралимпийских игр, а также впервые прошедших в прошлом году в Швейцарии соревнований среди людей с ограниченными возможностями Cybathlon, в которых одной из дисциплин было соревнование среди пользователей роботизированных протезов рук на ловкость и скорость выполнения манипуляций с предметами.

Возможное будущее (2025 год)

Миотея (НПФ Галетея)

Благодаря достижениям науки и техники люди с ограниченными возможностями смогут в значительной степени восстановить функциональность руки и способность к самообслуживанию. Утрата верхних конечностей перестанет быть серьезной проблемой, влекущей за собой потерю трудоспособности. Ежегодно будут проводиться специальные соревнования среди людей с бионическими протезами, заявки на выплату компенсаций за установку бионических протезов руки начнут приниматься в режиме одного окна, а время восстановления утраченной трудоспособности из-за различной степени ампутаций составит не более двух недель. Но главное, здоровые люди перестанут испытывать дискомфорт при общении с людьми-"киборгами", а роботизированные протезы будут восприниматься как один из гаджетов, наподобие умных часов.

Автор:и Иван Кречетов